

Rui Yao, Mogens Fosgerau, Mads Paulsen, and Thomas Kjær Rasmussen

DCM workshop 2024

Outline

- Background
- Perturbed utility SUE
 - Primal formulation
 - Lagrangian dual formulation
 - Quasi-Newtonaccelerated gradient descent
- Numerical results
- Conclusions

EPFL

Perturbed utility route choice model (PURC)

• A representative agent w is assumed to solve the following maximization problem in a network (V, E):

$$\max_{\substack{x^n \in \mathbb{R}_+^{|E|} \\ \text{s. t.}}} u^\top x^w - F^w(x^w) \text{ Perturbation}$$
 s. t.
$$Ax^w = b^w \text{ Flow conservation}$$

$$x^{w} \in \mathbb{R}_{+}^{|E|}$$

$$u \in \mathbb{R}^{|E|}$$

$$F^{w} \in \mathbb{R}^{|E|} \to \mathbb{R}$$

$$A \in \mathbb{R}^{|V| \times |E|}$$

$$b^{w} \in \mathbb{R}^{|V|}$$

- link flows

- utility index
- convex perturbation function
- incident matrix
- unit demand

Key properties

- Allow zero flows on irrelevant links
- Correlation between alternative routes induced directly from network

Perturbed utility route choice model (PURC)

$$\min_{\substack{x^n \in \mathbb{R}_+^{|E|} \\ \text{s.t.}}} c^{\mathsf{T}} x^w + F^w(x^w)$$
s.t.
$$Ax^w = b^w \qquad (\eta)$$

Assumptions: network perturbation function

$$F^{w}(x) = \sum_{ij} F^{w}_{ij} \left(x^{w}_{ij} \right)$$

- F_{ij}^{w} is link-specific, continuous differentiable, strictly convex, and strictly increasing
- $F_{ij}^{w}(0) = F_{ij}^{w'}(0) = 0$
- c is a vector of positive link cost

Perturbed utility route choice model (PURC)

Complementarity condition:

$$0 \le x_{ij}^{w*} \perp \left[c_{ij} + F_{ij}^{w'} (x_{ij}^{w*}) + \eta_j^{w*} - \eta_i^{w*} \right] \ge 0$$

- Estimation Given x_{ij}^{w*} , estimate parameters β in c_{ij}
- How to predict? Given β , solve for link flows x_{ij}^{w*}

For any given $c_{ij} > 0$,

$$x_{ij}^{w*} = (F_{ij}^{w'})^{-1} (\eta_i^{w*} - \eta_j^{w*} - c_{ij})$$

Exploiting the FOC (Key ingredient)

• What if cost is flow-dependent $c_{ij}(x_{ij})$?

Perturbed utility stochastic traffic assignment Primal formulation

• Primal formulation – Constrained optimization For a set of traveler types $\{w\}$, and demands $\{q^w\}$

$$\min_{x \geq 0} Z = \sum_{ij} \sum_{w} \left[\int_{0}^{\Sigma_{w'}} q^{w'} x_{ij}^{w'} t_{ij}(m) dm + q^{w} F_{ij}^{w} \left(x_{ij}^{w} \right) \right]$$
Beckmann's UE equation
$$s.t. \quad Ax^{w} - b^{w} = 0, \forall w$$
Flow conservation

Resulting SUE (optimal condition) is equivalent to FOC of PURC

Assumption: t_{ij} is positive, differentiable, increasing and strictly convex

Perturbed utility stochastic traffic assignment **Lagrangian dual formulation**

Recall
$$x_{ij}^{n*} = (F_{ij}^{n'})^{-1} (\eta_i^{n*} - \eta_j^{n*} - c_{ij}^*)$$

With flow-dependent
$$c_{ij}^* = t_{ij} \left(\sum_{w'} q^w x_{ij}^{w*} \right)$$

Lagrangian dual formulation – Unconstrained optimization!

$$\max_{\eta} G = \sum_{ij} \sum_{w} \left[\int_{0}^{\Sigma_{w'}} q^{w'} x_{ij}^{w'^*} t_{ij}(m) dm + q^{w} F_{ij}^{w} (x_{ij}^{w*}) \right] - \sum_{w} \eta^{w} (Ax^{w} - b^{w})$$

Lemma (Strong duality)

The duality gap between the primal TAP problem and the corresponding dual problem at their optimal solutions is zero.

Perturbed utility stochastic traffic assignment Quasi-Newton accelerated gradient descent

$$\boldsymbol{x_{ij}^{w*}} = \left(F_{ij}^{w'}\right)^{-1} \left(\eta_{i}^{w*} - \eta_{j}^{w*} - \boldsymbol{c_{ij}^{*}}\right) \qquad \boldsymbol{c_{ij}^{*}} = t_{ij} \left(\sum_{w'} q^{w} \boldsymbol{x_{ij}^{w*}}\right)$$
Interdependent

- Iterative update x_{ij}^{n*} with estimates of c_{ij}^{*} (Partial linearization)
- Update estimates of c_{ij}^* by solving an auxiliary fixed point

$$U_{ij}(x_{ij}^{w*}, c_{ij}^*) = t_{ij} \left(\sum_{w'} q^w x_{ij}^{w*} \right) - c_{ij}^* = 0$$

At each iteration, update one Newton-step of the auxiliary fixed point

Perturbed utility stochastic traffic assignment **Quasi-Newton accelerated gradient descent**

$$\max_{\eta} G = \sum_{ij} \sum_{w} \left[\int_{0}^{\sum_{w'} q^{w'} x_{ij}^{w'^*}} t_{ij}(m) dm + q^{w} F_{ij}^{w} (x_{ij}^{w*}) \right] - \sum_{w} \eta^{w} (Ax^{w} - b^{w})$$

$$\Delta = \frac{\frac{\partial G}{\partial \eta_i^w} = q^w (A_i x^w - b^w) \quad \text{Gradient}}{\frac{\partial^2 G}{\partial^2 \eta_i^w} = q^w A_i \nabla_{\eta_i^w} (F_{ij}^{w'})^{-1} \quad \text{Hessian} \atop \text{Diagonal}} \qquad \tilde{\eta}_j^{w(m+1)} = \tilde{\eta}_j^{w(m+1)} + \gamma \Delta^{(m)} + \frac{m}{m+\alpha} \left(\tilde{\eta}_j^{w(m+1)} - \tilde{\eta}_j^{w(m)} \right)$$

Ouasi-Newton

Nesterov's momentum acceleration

Perturbed utility stochastic traffic assignment

10

Perturbed utility stochastic traffic assignment Quasi-Newton accelerated gradient descent

- For each iteration:
 - 1. PURC assignment

$$x_{ij}^{w*(m+1)} = \left(F_{ij}^{n'}\right)^{-1} \left(\eta_i^{n*(m)} - \eta_j^{n*(m)} - c_{ij}^{*(m)}\right)$$

2. Update dual variables with qN-AGD*

$$\begin{split} \tilde{\eta}_{j}^{w(m+1)} &= \eta_{j}^{w(m)} + \gamma_{1} \Delta^{(m)} \\ \eta_{j}^{w(m+1)} &= \tilde{\eta}_{j}^{w(m+1)} + \frac{m}{m+\alpha} \Big(\tilde{\eta}_{j}^{w(m+1)} - \tilde{\eta}_{j}^{w(m)} \Big) \end{split}$$

3. Update link costs with one Newton-step

$$c_{ij}^{*(m+1)} = c_{ij}^{*(m)} - \gamma_1 \frac{U_{ij} \left(x_{ij}^{w*(m+1)}, c_{ij}^{*(m)} \right)}{\nabla_{c_{ij}^*} U_{ij} \left(x_{ij}^{w*(m+1)}, c_{ij}^{*(m)} \right)}$$

Quasi-Newton dual algorithm performance

Dual algorithm runtime performance

(comparison with existing algorithms in the literature)

Network	Problem size	Runtime [s]			
	N x W	Proposed	qN-AGD	AGD*	AGD
Sioux Falls	1.27E+04	0.25	0.43	1.95	5.78
Berlin-Friedrichshain	1.13E+05	2.17	7.23	42.83	144.12
Berlin-Tiergarten	2.31E+05	3.23	7.70	142.85	410.33
Anaheim	5.85E+05	0.58	0.65	16.87	26.71
Berlin-Center	9.26E+06	68.99	72.01	1487.23	3742.31
Chicago-Sketch	8.69E+07	94.90	125.77	7196.18	9322.30

Rui Yao

Quasi-Newton dual algorithm performance

Quasi-Newton dual algorithm performanceSolution trajectory

1

EPFL

PURC vs NGEV SUE

 $\begin{array}{c} {\sf PURC} \\ ({\sf perturbation\ scale}\ \mu=10) \end{array}$

NGEV (proportionality parameter = 10)

Conclusions

- Main takeaways
 - Equivalent unconstrained Lagrangian dual formulation for PURC SUE with flow-dependent costs
 - Fast assignment algorithm with potential for very large application
 - Predicted equilibrium pattern is plausible
 - Applicable for flow-independent problems, typical setting for choice model prediction.
- Future directions
 - Application in design problems
 - Modeling and prediction in other (virtual) networks?

EPFL

■ École polytechnique fédérale de Lausanne