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Perturbed utility route choice model (PURC)

= Arepresentative agent w is assumed to solve the following maximization problem
in a network (V,E) :

max  u'x¥ —|F%(x") | Perturbation

x”e]lel
S. t. AxY = bY Flow conservation
x e RIE! - link flows Key properties
u € RIE - utility index « Allow zero flows on irrelevant links
F¥ e RIEl 5 R - convex perturbation function  Correlation between alternative routes
A € RIVIXIEI - incident matrix induced directly from network

pv € RIVI - unit demand
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Perturbed utility route choice model (PURC)

min, cTx¥ + FY(xV)
xMeR]

s. t. Ax%Y = p% (m)

= Assumptions: network perturbation function

P o0 = ) Ry (e
ij
* Fjj is link-specific, continuous differentiable, strictly convex, and strictly increasing
* Fy(0)=F}'(0) =0

* c is a vector of positive link cost
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= Complementarity condition:

0<xj 1 lci; + FW'(x )+r] —n¥*] =0

= Estimation — Given x;}", estimate parameters £ in ¢;;

l]’

* How to predict? — Given f, solve for link flows x;;"
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/
For any given ¢;; > 0,

er , Exploiting the FOC
( ) (77 “u ) (Key ingredient)

.

= What if cost is flow-dependent c;;(x;;)?
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Perturbed utility stochastic traffic assignment
Primal formulation

= Primal formulation — Constrained optimization
For a set of traveler types {w}, and demands {g"'}

/CI x
minZ = Zz U U-(m)dm+quW(x
x=0

Y J \_Y_}
Beckmann’s UE equation Perturbation
s.t.  AxV —-b¥ =0,Vw Flow conservation

* Resulting SUE (optimal condition) is equivalent to FOC of PURC

Assumption: t;; is positive, differentiable, increasing and strictly convex
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Perturbed utility stochastic traffic assignment
Lagrangian dual formulation

Recall  xJ" = (F) " (0¥ — )" —ciy)

With flow-dependent ¢;; = t;; (Z qwx¥*>

W’

= Lagrangian dual formulation — Unconstrained optimization!

ZW, qW,xY\J{,*
max G = Z z U tij(m)dm + qWFl-‘}’(x}’}f*)] — Z n"(Ax" — b%)
g ij w 0 w

Lemma (Strong duality)

The duality gap between the primal TAP problem and the corresponding dual problem
at their optimal solutions is zero.
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Perturbed utility stochastic traffic assignment
Quasi-Newton accelerated gradient descent

= (Fy) " —c;;) -y =t <z qwxiv]v,*>

Interdependent w!

= Iterative update x;;" with estimates of ¢;; (Partial linearization)

= Update estimates of ¢;; by solving an auxiliary fixed point

Uij (xl] ) lj) =ty (Z qwxlyl]{*) — Ci*j =0
W,

= At each iteration, update one Newton-step of the auxiliary fixed point
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Quasi-Newton accelerated gradient descent

Rui Yao ©

/q x
j tl] (m)dm + qWFW(x

maXG ZZ
—an(Ax —b%)

é 06 =q"(4;x" —b") Gradient

:g A an}/v i ﬁ}{V(mH) _ 77] w(m) + yA(m)

‘g iGW =q" A, V (FW’) -1 Hessian nw(m+1) _ ﬁw(m+1) g m m (~w(m+1) ~w(m))
E o%m; w Diagonal / J m+a\l T

§ Quasi-Newton Nesterov’'s momentum acceleration
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Perturbed utility stochastic traffic assignment
Quasi-Newton accelerated gradient descent

» For each iteration:

1. PURC assignment

w*(m+1) (Fn,) ( n*(m) 77;1*(711) . Ci*j(m))

2. Update dual variables with gN-AGD*

wim+1) _ ~w(m+1) m w(m+1)  ~w(m)
77] 77] + m + a (n] n] )

3. Update link costs with one Newton-step
wx(m+1) *(m)
SmD) _ m) Uij (xu ' Cij )
ij T wr(m+1) x(m)
Ve; UU( <)

[y
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Quasi-Newton dual algorithm performance

Dual algorithm runtime performance
(comparison with existing algorithms in the literature)

Problemsize | Runtimefs] |

1.27E+04 0.25 0.43 1.95 5.78
Berlin-Friedrichshain 1.13E+05 217 7.23 42.83 144.12
Berlin-Tiergarten 2.31E+05 3.23 7.70 142.85 410.33
5.85E+05 0.58 0.65 16.87 26.71
Berlin-Center 9.26E+06 68.99 72.01 1487.23 3742.31

Chicago-Sketch 8.69E+07 94.90 125.77 7196.18 9322.30
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L

Quasi-Newton dual algorithm performance

GPU runtime [s]
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=PFL Quasi-Newton dual algorithm performance
Solution trajectory E

gN-AGD* gN-AGD AGD* AGD
(Proposed)



=PrL - PURC vs NGEV SUE )

ignment

PURC NGEV
(perturbation scale u = 10) (proportionality parameter = 10)
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Conclusions

= Main takeaways

» Equivalent unconstrained Lagrangian dual formulation
for PURC SUE with flow-dependent costs

» Fast assignment algorithm with potential for very large application

* Predicted equilibrium pattern is plausible

 Applicable for flow-independent problems,
typical setting for choice model prediction.
= Future directions
 Application in design problems
» Modeling and prediction in other (virtual) networks?
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